# "Far Field" Reactor Monitoring using Neutrinos

The monitoring of weapons production reactors at long distance is a national security initiative. Also important for future arms control treaties.

National Nuclear Security Administration

#### Select Initiatives

#### Strengthen Nuclear Safeguards:

- By 2013, deploy new non-destructive assay technologies to directly quantify plutonium in spent fuel.
- By 2016, demonstrate remote monitoring capabilities for reactor operations.

#### Counterterrorism and Nuclear Threat Response:

- By 2012, hold joint nuclear facility or transportation security exercises with two established foreign partners.
- By 2012, establish new partnerships with two additional foreign partners.
- By 2012, complete nuclear materials and energetic materials characterization and prioritization, initiate development of new nuclear counterterrorism render safe tools, and conduct the 100th counterterrorism tabletop exercise.



This is a different challenge from "Near Field" technology

### Plutonium Production

$$^{238}$$
U + n →  $^{239}$ U + γ  
 $^{239}$ Np + e + ν (23.45 m)  
 $^{239}$ Pu + e + ν (2.36 d)

$$^{239}$$
Pu + n →  $^{240}$ Pu + γ (~ 30%)  
→ fission (~ 70%)



$$^{240}$$
Pu + n  $\rightarrow$   $^{241}$ Pu +  $\gamma$ 

Note: <sup>238</sup>U and <sup>240</sup>Pu have small cross sections for *fast* fission.

The content of nuclear fuel changes with time as the reactor core "evolves". The <sup>240</sup>Pu/<sup>239</sup>Pu ratio increases as the core evolves.



## Operation Pattern of Typical Power Reactor

#### **Neutrino rate**



#### NEUTRON CROSS-SECTIONS FOR FISSION OF URANIUM AND PLUTONIUM



Pu-239 can be used to make nuclear weapons. Easier to extract chemically than to try and isotopically separate uranium.

Pu-240 is undesirable due to smaller fission cross section and relatively large branching ratio to spontaneous fission which can cause "pre-detonation" or result in a "fizzle".

## The Challenges

- 239-Pu can be produced in relatively small (100 MWth or less) reactors operating with a short duty cycle of few weeks. E.g. the reactors the U.S. used at Hanford were originally 250 MWth.
- Limited thermal signature, remote location.
- Large detectors needed (megaton scale)



| Reactor name                 | Start-up date | Shutdown date | Initial power<br>(MWt) | Final power<br>(MWt) |
|------------------------------|---------------|---------------|------------------------|----------------------|
| B Reactor                    | Sep 1944      | Feb 1968      | 250                    | 2210                 |
| D Reactor                    | Dec 1944      | Jun 1967      | 250                    | 2165                 |
| F Reactor                    | Feb 1945      | Jun 1965      | 250                    | 2040                 |
| H Reactor                    | Oct 1949      | Apr 1965      | 400                    | 2140                 |
| DR ("D Replacement") Reactor | Oct 1950      | Dec 1964      | 250                    | 2015                 |
| C Reactor                    | Nov 1952      | Apr 1969      | 650                    | 2500                 |
| KW ("K West") Reactor        | Jan 1955      | Feb 1970      | 1800                   | 4400                 |
| KE ("K East") Reactor        | Apr 1955      | Jan 1971      | 1800                   | 4400                 |
| N Reactor                    | Dec 1963      | Jan 1987      | 4000                   | 4000                 |

These reactors produced 239-Pu for 60,000 Nuclear weapons

# WATCHMAN

WATer CHernkov Monitoring of Anti-Neutrinos



### WATCHMAN Collaboration

A. Bernstein, N. Bowden, S. Dazeley, D. Lawrence Li Dobie, M. Sweany

Lawrence Livermore National Laboratory

P. Marleau, W. Hsu, , J. Goldsmith, S.

Sandia National Laboratories\*

Kiff, D. Reyna, C. Tewell

K. Van Bibber, R. Norman, K. Vetter, C.

Roecker, J. Vujic, T. Shokair

UC Berkeley

R. Svoboda, M. Bergevin, M. Askins UC Davis

J. Learned, S. Dye , J. Maricic University of Hawaii

M. Vagins UC Irvine

### WATCHMAN: Development of Critical Technologies

- Megaton scale detectors with neutron detection capability to tag IBD events (e.g. Gd doping)
- Sophisticated background rejection capability
- Low theshold (1 MeV is ideal) to achieve high efficiency
- Low cost light sensors, e.g. large area MCP's
- Enhanced light yield (water based liquid scintillator, WbLS)

|     | Inverse beta<br>event rates<br>in a 1<br>Megaton | Reactor<br>Thermal<br>power<br>(MWt) | Standoff<br>distance<br>(km) | Signal rate<br>(per<br>month) | background<br>(non-reactor,<br>per month) | Detection<br>efficiency | Over-<br>burden<br>(mwe) | 3 sigma<br>significance |
|-----|--------------------------------------------------|--------------------------------------|------------------------------|-------------------------------|-------------------------------------------|-------------------------|--------------------------|-------------------------|
| det | detector                                         | 10                                   | 400                          | 1                             | 0.5                                       | 50%                     | 2000                     | 1 year                  |

## Two-Phase Project Timeline

- Two intermediate phases to evaluate background and feasibility of technology
  - Phase I (funded, content of this talk):
    - Fast neutron assay at varying depth
    - Radionuclide production studies in water target
    - Deployment planned for June 2013 -2014 at KURF.
  - Phase II (proposed):
    - 1 kiloton water-based Cherenkov detector at 1 to 10 km standoff from a 0.1 to 10 GWt reactor.
    - Decision late 2014 to early 2015

# Phase I: Measurement at KURF (Kimballton Underground Research Facility)





KURF is an operating underground science facility operated by the Virginia Tech Neutrino Science Center.

Access to multiple depths 100 - 600 m.w.e.





# Phase I: Fast Neutron detector Multiplier and Recoil Spectrometer (MARS)



Set a flux at different depth and do relative measurements



- Plastic scintillator/Gd doped paint detectors sandwich ~4 tons of lead.
- Direct interaction with scintillator for E
   ~100 MeV.
- Neutron multiplication off of the lead for E > ~50 MeV.
- Expect 3000-5000 events per month at 100 m.w.e.

# Radio-isotope production

#### Detector

#### **Properties**

- 3.5x3.5 meter detector
- 1.5x1.5 meter active inner volume.
- 0.1% Gd doping.
- Depth chosen as to produce a muon rate of 1 Hz within the inner volume of the detector

#### **Timeline**

Starting in June:

- One year at 300 m.w.e..





## WbLS Development at BNL





WbLS is not a mix of water and fluor or shifter.

A net light gain of  $4.4 \pm 0.5$ 

X. Dai et al., NIM-A 589 (2008) 290



Fig. 2. The UV/VIS absorption (left) and fluorescence emission spectra (right) for carbostyril 124 and Alexa Fluor 350.



Previous WbLS trials are either gel-like or not stable over time.





A scintillation water serves as energy spectrometer that probes physics below Cerenkov threshold.

bridged by non-ionic syurfactant, i.e. LAB derivatives, sulfonate, sulfonic amine, etc.

#### Factor of 20 in light yield from 137-Cs source



M.Yeh, BNL APS 2012 March meeting







### **New Photosensors**

New 12" HQE PMT's from Hamamatsu developed for LBNE:

- 60% improvement over Super-K PMT's per sq.cm

New Hybrid PMT's developed for Hyper-Kamiokande:

- goal is low cost
- high p.e. resolution

Large Area Picosecond Photon Detectors:

- cover large areas
- goal is low cost, high resolution
- possibility of PPD mode operation

## Conclusions

- Far field monitoring of small nuclear reactors is on the edge of being technically feasible
- There are a few critical technologies that are being developed (rather independently) for neutrino physics that could significantly enhance the feasibility
- There is a dedicated group (WATCHMAN) that is pursuing a demonstration prototype at the 1-kton scale within the immediate future